Dimerization facilitates the conformational transitions for bacterial phosphotransferase enzyme I autophosphorylation in an allosteric manner
نویسندگان
چکیده
The bacterial phosphotransferase system is central to sugar uptake and phosphorylation. Enzyme I (EI), the first enzyme of the system, autophosphorylates as a dimer using phosphoenolpyruvate (PEP), but it is not clearly understood how dimerization activates the enzyme activity. Here, we show that EI dimerization is important for proper conformational transitions and the domain association required for the autophosphorylation. EI(G356S) with reduced dimerization affinity and lower autophosphorylation activity revealed that significantly hindered conformational transitions are required for the phosphoryl transfer reaction. The G356S mutation does not change the binding affinity for PEP, but perturbs the domain association accompanying large interdomain motions that bring the active site His189 close to PEP. The interface for the domain association is separate from the dimerization interface, demonstrating that dimerization can prime the conformational change in an allosteric manner.
منابع مشابه
Structure of the full-length enzyme I of the phosphoenolpyruvate-dependent sugar phosphotransferase system.
Enzyme I (EI) is the phosphoenolpyruvate (PEP)-protein phosphotransferase at the entry point of the PEP-dependent sugar phosphotransferase system, which catalyzes carbohydrate uptake into bacterial cells. In the first step of this pathway EI phosphorylates the heat-stable phospho carrier protein at His-15 using PEP as a phosphoryl donor in a reaction that requires EI dimerization and autophosph...
متن کاملCombined use of residual dipolar couplings and solution X-ray scattering to rapidly probe rigid-body conformational transitions in a non-phosphorylatable active-site mutant of the 128 kDa enzyme I dimer.
The first component of the bacterial phosphotransferase system, enzyme I (EI), is a multidomain 128 kDa dimer that undergoes large rigid-body conformational transitions during the course of its catalytic cycle. Here we investigate the solution structure of a non-phosphorylatable active-site mutant in which the active-site histidine is substituted by glutamine. We show that perturbations in the ...
متن کاملCoordinate regulation of adenylate cyclase and carbohydrate permeases by the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium.
Adenylate cyclase (EC 4.6.1.1) and several carbohydrate permeases are inhibited by D-glucose and other substrates of the phosphoenolpyruvate:sugar phosphotransferase system. These activities are coordinately altered by sugar substrates of the phosphotransferase system in a variety of bacterial strains which contain differing cellular levels of the protein components of the phosphotransferase sy...
متن کاملLarge-scale allosteric conformational transitions of adenylate kinase appear to involve a population-shift mechanism.
Large-scale conformational changes in proteins are often associated with the binding of a substrate. Because conformational changes may be related to the function of an enzyme, understanding the kinetics and energetics of these motions is very important. We have delineated the atomically detailed conformational transition pathway of the phosphotransferase enzyme adenylate kinase (AdK) in the ab...
متن کاملLarge interdomain rearrangement triggered by suppression of micro- to millisecond dynamics in bacterial Enzyme I
Enzyme I (EI), the first component of the bacterial phosphotransfer signal transduction system, undergoes one of the largest substrate-induced interdomain rearrangements documented to date. Here we characterize the perturbations generated by two small molecules, the natural substrate phosphoenolpyruvate and the inhibitor α-ketoglutarate, on the structure and dynamics of EI using NMR, small-angl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017